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10.1 INTRODUCTION

Surface runoff on upland areas such as hillslopes is often accompanied by soil
erosion.  Soil particles may be detached when the impact of raindrops exceeds
the soil’s ability to withstand the impulse at the soil surface.  Detachment may
also occur when shear stresses caused by flowing water exceed the soil's ability
to resist these erosive forces.  Vegetation as canopy and ground cover, and
other surface cover such as gravel and rock fragments, protect the soil surface
from direct raindrop impact, and also provide hydraulic resistance, reducing the
shear stresses acting on the soil.  Plant roots, incorporated plant residue, and
minerals increasing cohesion tend to protect the soil by reducing the rate of
soil particle detachment by flowing water and raindrop impact.
   Once detachment has occurred, sediment particles are transported by raindrop
splash and by overland flow.  Conditions which limit raindrop detachment limit
the sediment supply available for transport by splash and flow mechanisms.
Vegetative canopies intercept splashed sediment particles and limit sediment
transport by splash.  The rate of sediment transport by overland flow is
influenced by the factors controlling the amount of sediment available for
transport, the sediment supply, and by hydraulic processes occurring in overland
flow such as raindrop impacts, depth of flow, velocity, and accelerations due to
microtopographic flow patterns.  Obviously, the steepness, shape, and length of
slopes affect both flow patterns and the resulting sediment transport capacity
of the flowing water.
   After sediment particles are detached from soil areas above, between, and
near locations of small flow concentrations, they may enter the flow
concentration areas for subsequent transport downslope by hydraulic processes.
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Throughout the remainder of the chapter, the flow concentration areas are called
rills, and the areas between the rills are called interrill areas.  Together,
these interrill and rill areas make up the overland flow surface.  Sediment
particles detached in the interrill areas move to the rills by the processes of
splash as the result of raindrop impact, and by suspension and saltation in
overland flow.  The rate of delivery of water and sediment to the rills affects
the rates of sediment detachment, transport, and deposition in the rills.
   Deposition occurs in overland flow when sediment particles come to rest on
the soil surface, which occurs when sediment load in the flow exceeds the flow's
capacity to transport the sediment.  The rate of deposition is determined by
both flow characteristics affecting energy, momentum, and turbulence and
sediment particle characteristics, including particle interactions, affecting
fall or settling velocity.
   Thus, the processes controlling sediment detachment, transport, and
deposition on the hillslope scale, lumped under the term erosion processes, are
complex and interactive.  This complexity leads to the need for upland erosion
models as tools in resource management.  Erosion models and observations are
superior to observations alone, because simultaneous observation and measurement
of all the processes controlling surface runoff and erosion are beyond the
current and foreseeably available technology.  Moreover, observations and
measurements are particularly difficult, due to the small temporal and spatial
scales necessary during a runoff and erosion event.  Quite often, after the fact
observations are the best that can be obtained.  Almost as often, these post
event observations reveal little of the actual mechanisms causing the erosion.
   Ideally, an erosion model should represent the essential mechanisms
controlling erosion, and the model parameters should be directly related to
measurable physical properties.  However, under real conditions, all models are
more or less incorrect, because all models are abstractions and simplifications
of the actual physical processes. Moreover, model parameters are often
impossible or difficult to directly measure, and thus are always, to some
extent, data based rather than predetermined.  These real-world problems with
mathematical models of overland flow and erosion have resulted in three main
types of models: those that are primarily empirically based; those that are
partially conceptually based and partially empirically based; and those that are
partially process based or physically based and partially empirically based.  As
will be illustrated in subsequent discussions, these three main types of models
are typified by the Universal Soil Loss Equation (USLE) as described by
Wischmeier and Smith (1978), by the unit sediment graph (i.e. Rendon-Herrero,
1978; Williams, 1978), and by coupled overland flow-erosion equations based on
the concepts of kinematic flow and separable rill and interrill erosion
processes (i.e. Foster, 1982 and his example model listed on pp. 370-372).  Some
examples of the three types of models are shown in Table 10.1.

10.1.1 Developments Resulting in the USLE

Recently, Meyer (1984) and Nyhan and Lane (1986) summarized the evolution of the
USLE, and the latter divided its development into four historical periods.  The
first period (1890s-1940) was described as a period wherein a basic
understanding of most of the factor affecting erosion was obtained in a
qualitative sense (Cook, 1936).  This period include the rainfall studies of
Laws (1940) and the analyses of the action of raindrops in erosion reported by
Ellison (1947).
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Table 10.1. Some examples of empirical and conceptual models

Model Type Model Author
Empirical Musgrave Equation

Universal Soil Loss
Equation (USLE)
Modified Universal Soil Loss
Equation (MUSLE) Sediment
Delivery Ratio Method
Dendy-Boltan Method Flaxman
Method
Pacific Southwest Interagency
Committee (PSIAC) Method
Sediment Rating Curve Runoff-
Sediment Yield Relation

Musgrave (1947)
Wischmeier and Smith (1978)
Williams (1975)

Renfro (1975)
Dendy and Boltan (1976)
Flaxman (1972)
Pacific Southwest Interagency
Interagency Committee (1968)
Campbell and Bauder (1940)
Rendon-Herrero (1974), Singh,
Baniukiwicz and Chen (1982)

Conceptual Sediment Concentration
Graph
Unit Sediment Graph
Instantaneous Unit
Sediment Graph
Discrete Dynamic Models
Renard-Laursen Model
Sediment Routing Model
Muskingum Sediment Routing
Model

Johnson (1943)
Rendon-Herrero (1978)
Williams (1978)

Sharma and Dickinson (1979)
Renard and Laursen (1975)
Williams and Hann (1978)
Singh and Quiroga (1986)

Physically based Quasi-Steady State
Erosion Kinematic Wave
Models

Continuum Mechanics Model

Foster.  Meyer and Onstad
(1977)
Hjelmfelt, Piest and Saxton
(1975),
Shirley and Lane (1978),
Singh and Regl (1983)
Prasad and Singh (1982)

   During the period 1940-1954, work in the Corn Belt of the United States
resulted in a soil loss estimation procedure incorporating the influence of
slope length and steepness (Zingg, 1940), conservation practices (Smith, 1941;
Smith and Whitt, 1947), and soil and management factors (Browning et al, 1947).
In 1946, a national committee reappraised the Corn Belt factor values, included
a rainfall factor, and produced the resulting Musgrave equation (Musgrave,
1947).
   During the period 1954-1965, the USLE was developed by the United States
Department of Agriculture (USDA), Agricultural Research Service in cooperation
with the USDA-Soil Conservation Service and state agricultural experiment
stations.  Plot data from natural storms and from rainfall simulator studies
formed the USLE data base.  During the 1965-1978 period, additional data and
experimental results were incorporated, resulting in the current USLE
(Wischmeier and Smith, 1978).
   The USLE in equation form is:

RKLSCPA = (1)

where:



290 MODELLING GEOMORPHOLOGICAL SYSTEMS

A = the computed soil loss per unit area (tons per acre-yr).
R = the rainfall and runoff factor (hundreds of ft-tons-in per acre-

hr-yr),
K = the soil erodibility factor (tons-acre-hr per hundreds of acre-

ft-tons-in),
LS = the slope length-steepness factor (1.0 on uniform 72.6 ft slope

at 9 per cent steepness),
C = the cover-management factor (1.0 for tilled, continuous fallow),

and
P = The supporting practices factor (1.0 for up and down hill

tillage, etc.).
The original USLE was presented in English units, hence their usage here.  The
unit plot (where LS, C and P are all equal to 1.0) is defined as a clean tilled,
up and down slope, 72.6 ft long plot with a uniform 9 per cent slope.  For slope
lengths of 30 to 300 ft and steepness from 3 to 18 per cent, the LS factor
ranges from a low of about 0-2 to a high of about 6. Values of the C factor
range from a low of about 0.003, for near complete grass cover, to 1.0 for the
unit plot.  Values of the P factor range from 0.5 for contouring to 1.0 for the
unit plot.  Values of the R factor range from under 20 to over 550 in the
continental United States, with some values outside these limits in other parts
of the world representing greater climatic extremes.  Wischmeier and Smith
(1978, pp. 8-11) list values of the soil erodibility factor, K, ranging from
0.03 to 0.69, with most values in the range 0.2 to 0.4.  With appropriate values
of the above factors, the USLE is intended to predict the long-term average
annual soil loss from uniform slopes, or from nonuniform slopes without
deposition (Foster and Wischmeier, 1974).
   That the USLE remains the most widely used tool in predicting upland erosion
supports the description of upland erosion processes as complex and interactive.
The state of the art is such that more conceptual and processes based erosion
prediction equations for practical applications are just emerging, and do not
yet have wide usage.

10.1.2 Development of Conceptual Models

The conceptual models lie somewhere between empirically and physically based
models, and are based on spatially lumped forms of continuity equations for
water and sediment and some other empirical relationships.  Although highly
simplified, they do attempt to model the sediment yield, or the components
thereof, in a logical manner.  To summarize, conceptual models of sediment are
analogous in approach to chose of surface runoff, and hence, embody the concepts
of the unit hydrograph (UH) theory.  Rendon-Herrero (1974, 1978) was probably
the first to have extended this theory to derive a unit sediment graph (USG) for
a small watershed.  The sediment load considered in the USG is the wash load
only.  Rendon-Herrero (1974) expressed the following to define the USG:

A form of a unit sediment graph was indeed developed whose standard unit was
1.0 ton (910kg) for a given duration, distributed over the watershed,
analogous in unit-hydrograph analysis to 1.00 in. (25 mm) of excess
(effective) rainfall over the same area.

In light of this definition, the USG and UH are similar in their derivations.
To discuss the derivation of the USG by Rendon-Herrero, the following steps are
outlined.

1. Select an isolated rainfall-runoff event of a desired duration in accordance
with the requirement of the UH for which the sediment concentration graph C
is known.
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2. Separate the baseflow Qb from the runoff hydrograph QT using a standard,
hydrograph separation technique to obtain the direct runoff hydrograph Q,

)()()( tQtQtQ bT −= (2)

3. Using the same baseflow separation technique, separate out the sediment
concentration due to baseflow.  It should be noted that Rendon-Herrero
assumed that the maxima of runoff and sediment concentration occurred at the
same time.

4. Compute sediment discharge Qs due to direct runoff by noting that sediment
discharge is the product of water discharge and sediment concentration,

bbTTS CQCQQ −= (3)

5. Compute the volume of direct runoff, which is the area under the direct
runoff hydrograph.

∫
∞

=
0

d)( ttQVQ   (4)

6. Compute the sediment yield, which is the area under the sediment graph due
to direct runoff.

∫
∞

=
0

dtQV SS (5)

7. Divide the ordinates of the sediment graph by the sediment yield to obtain
ordinates of the USG, Hs,

S

S
S V

Q
H =  (6)

   The USG varies somewhat with the intensity of the effective rainfall.  It can
be used to generate a sediment graph for a given storm if the wash load produced
by that storm is known.  A relationship between Vs and VQ was proposed.  Using
this relation, Vs can be determined.  Therefore, Qs can be determined by
multiplying Hs with Vs.  It must be noted that the duration of the USG chosen to
determine Q, must be the same as that of the effective rainfall generating VQ.
This USG method was tested on a small wash loadproducing watershed, Bixler Run
Watershed, near Loysville, Pennsylvania.
   Rendon-Herrero (1974) proposed the use of the so-called 'series' graph to
determine the sediment hydrograph.  This method has the advantage that the
duration of the effective rainfall is neglected altogether, but requires
construction of the series graphs beforehand.  Thus, this method cannot be
extended to ungauged basins.  Williams (1978) and Singh et al (1982), among
others, have used the USG to model watershed sediment yield.

10.1.3 Development of Physically Based Erosion Models

Fundamental erosion mechanics were of interest to scientists and engineers as
early as 1936 (Cook, 1936), and were described in terms of subprocesses by
Ellison (1947).  Negev (1967) included an erosion component in the Stanford
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Watershed Model (Crawford and Lindsley, 1962).  Meyer and Wischmeier (1969)
presented relationships for the major erosion subprocesses, and incorporated
them in a model of overland flow erosion, which formed the conceptual basis of
most subsequent erosion modelling efforts.
   Foster and Meyer (1972) published a paper on a closed-form soil erosion
equation for overland flow, which demonstrated the ability of models in this
class to provide insight into the spatial variability of erosion on hillslopes
and into the separable interrill and rill erosion processes.  This analysis
assumed steady state conditions, and emphasized spatially variable processes.
However, it set the stage for subsequent analyses of spatially varying and
unsteady overland flow and erosion.
   Hjelmfelt, Piest, and Saxton (1975) solved the coupled partial differential
equations for overland flow with interrill and rill erosion and constant and
uniform rainfall excess.  However, they solved them only for the rising and
steady state portions of the overland flow hydrograph.  Shirley and Lane (1978)
solved the equations for constant and uniform rainfall excess of finite duration
over the entire overland flow hydrograph using the method of characteristics,
and then integrated the equations to produce a sediment yield equation for the
entire runoff hydrograph.  Singh and Prasad (1982) advanced the models by
formulating the partial differential equations for overland flow and erosion on
an infiltrating plane, and then presented analytic solutions, by the method of
characteristics, for the special case of constant and uniform rainfall and
infiltration, or constant and uniform rainfall excess, on a sloping plane.
Also, see Singh (1983) for a more complete description of the methods of
solution.  Solution domains and analytic solutions of the overland flow and
interrill and rill erosion equations for the special case of constant and
uniform rainfall excess on a plane are given in the Appendix.  These solutions
can be examined in analytic form to illustrate changes in sediment concentration
in time and space for the case of unsteady and spatially variable overland flow.
   Subsequent investigators examined various approximations to the analytic
solutions described above (e.g. Rose et al., 1983a), and their fit to measured
data (Rose et al., 1983b).  Lane and Shirley (1982) also discussed the fit of
the coupled overland flow and interrill and rill erosion equations to time
varying runoff and sediment concentration data from plots and a small watershed
on the Walnut Gulch Experimental Watershed in southeastern Arizona, USA.  Blau
(1986) examined the parameter identifiability of the overland flowerosion model
for the special case of constant and uniform rainfall excess on a plane.  He
concluded that, because of parameter interactions in the model, parameter values
were difficult to obtain by least squares optimization using measured data.
   As indicated above, the research reported on the more physically based
overland flowerosion equations are representative of mathematical derivations
and manipulations, or of efforts to determine parameter values by fitting the
models to measured data.

10.1.4 Scope and Limitations

Subsequent discussions will be primarily limited to erosion processes occurring
in overland flow on plots and hillslopes.  Although some of the more major
assumptions and approximations used in deriving solutions to the governing
equations are described, the main emphasis is on their solutions after the
simplifying assumptions and the mathematical and practical significance of the
approximating equations and their solutions.
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10.1.5 Purpose

The first purpose of this chapter is to describe the evolution and status of
erosion models for hillslopes based upon the kinematic wave equations for
overland flow, and on the interrill and rill terms for erosion.  The second
purpose is to examine a particular erosion model for which analytic solutions
can be obtained, and then to discuss the mathematical properties and
implications of the solutions as they relate to experimental design and
interpretation of experimental data.

10.2 OVERLAND FLOW AND EROSION EQUATIONS

The development of improved erosion equations for overland flow is based upon
prior development of improved flow equations.  That is, the development of
methodology for simulation of unsteady and spatially varying overland flow made
the subsequent simulation of interrill and rill erosion possible.

10.2.1 The Shallow Water Equations

Unsteady and spatially varying and one-dimensional flow per unit width on a
plane was described by Kibler and Woolhiser (1970) using the following
equations:
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where

h = local depth of flow (dimension of length, L),
u = local mean velocity (L/T),
t = time (T),
x = distance in the direction of flow (L),
R = lateral inflow rate per unit area (L/T),
g = acceleration of gravity (L/T2),
SO = slope of the plane.
Sf = friction slope, and
v = velocity component of lateral inflow in the

direction of flow (L/T).
Equation 7 is the continuity of mass equation, and equation 8 is the one-
dimensional momentum equation.  In general, equations 7 and 8 must be solved
numerically.  Modelling real overland flow with one-dimensional equations
represents significant abstractions and simplifications.  Real overland flow
occurs in complex mixes of sheet flow and small concentrated flow areas.  The
routes of concentrated flow are often determined by irregular microtopographic
features which vary in the downstream direction (x) and in the lateral direction
(y).  Definitive analyses of the influences of such simplifications upon
hydraulic and erosion parameters are nonexistent.
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   The lateral inflow, R, in equations 7 and 8, is, in reality, a complex
function of time and space representing all the variations in rainfall input and
in infiltration.  It is often represented as the positive difference between
instantaneous rates of rainfall and infiltration, or as zero if infiltration
rate exceeds rainfall rate.  This positive difference is called rainfall excess.
In solving equations 7 and 8, a typical assumption is that a block of rainfall
can be divided into infiltration and rainfall excess.  Rainfall excess is then
routed as if the surface were impervious, which is a significant simplification
(Smith and Woolhiser, 1971) Moreover, infiltration is usually assumed to be
uniform over the overland flow surface, while in reality, infiltration rates
vary significantly in space.  The assumption of spatially uniform infiltration,
and thus rainfall excess, is a serious limitation in most current modelling
approaches, and may preclude accurate prediction of overland flow under many
natural conditions (i.e. Lane and Woolhiser, 1977).
   The velocity component, v, in equation 8, is almost always assumed to be
zero.  This assumption may be reasonable on natural overland flow surfaces for
distances on the order of a meter or larger.  The validity of this assumption
has not been tested on a smaller scale, on the order of a centimeter or so, and
v may be quite significant in raindrop impact and sediment detachment and
transport processes at this scale.

10.2.2 The Kinematic Wave Equations

If all terms in the momentum equation, equation 8, axe assumed to be small in
comparison with the g(So - Sf) term and can be neglected, then the shallow water
equations become the kinematic wave equations.  The kinematic wave equations for
overland flow per unit width on a plane are:

R
x

q

t

h =
∂
∂+

∂
∂

(9)

and

mKhq = (10)

where:

q = the local runoff rate per unit width (L2 T-1),
K = the stage-discharge coefficient (Lm-1 T-1), and
m = the exponent dependent upon the friction law assumed.

The exponent m is 3/2 for the Chezy equation and 5/3 for the Manning equation.
Throughout the remainder of this chapter, the Chezy form will be used so that m
= 3/2 and

SCK =  (11)

where C is the Chezy resistance coefficient (L1/2T-1), and S is the slope of the
plane surface.
   Lighthill and Whitham (1955) introduced the kinematic wave theory for flood
routing in rivers and for overland flow.  Iwagaki (1955) used the kinematic
assumptions and a method of characteristics for unsteady flow in rivers.
Henderson and Wooding (1964) used the kinematic wave equations for steady rain
of finite duration and for flow over a sloping plane.  Woolhiser and Liggett
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(1967) showed that solutions to the kinematic wave equations are a good
approximation to the solutions to the shallow water equations, provided the
kinematic flow number is larger than about 20.  It is important to note that
this refers to the accuracy with which the kinematic wave solutions approximate
solutions to the shallow water equations for sheet flow on a plane.  The
kinematic flow number says nothing about how well the shallow water equations,
with one-dimensional flow and spatially uniform parameters, approximate overland
flow on natural surfaces.

10.2.3 Equations for Erosion by Overland Flow

The sediment continuity equation, with the kinematic assumptions, is quite
similar to the water continuity equation on the left hand side.  The right hand
side of the sediment continuity equation is commonly separated into an interrill
erosion term, EI, and the rill erosion term, ER.  With these assumptions, the
continuity equation for sediment is:
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∂
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∂

∂ )()(
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where:

c = sediment concentration (M L-3),
EI = interrill erosion rate per unit area per unit time (M L-2 T-1), and
ER = net rill erosion (or deposition) rate (M L-2 T-1),

and the other variables are as described earlier.  The procedure is to solve the
flow equations first, and then solve equation 12 for sediment concentration.
Total sediment yield for a storm, Vs, is then found by integrating the product
cq over the period of runoff.

The interrill term, EI

The rate of interrill erosion is a function of the rate of detachment by
raindrop impact and the rate of transport from the point of detachment to a
rill.
   As discussed in the introduction, interrill erosion is, by definition, caused
by raindrop detachment and the rate of transport in the shallow interrill flow.
On steep slopes, the rate of detachment by raindrop impact limits interrill
erosion, whereas transport capacity in interrill flow limits the rate of
delivery on flat slopes (Foster, Meyer, and Onstad, 1977).  These authors, and
others, document the dependence of interrill erosion on soil characteristics,
slope steepness, and canopy and ground cover.  In equation form, this can be
expressed as

),,,( SoilCSIfEI = (13)

where I, S, and C are rainfall intensity, slope of the land surface, and cover
effects, respectively.  Soil refers to the soil characteristics, primary
particle-size distribution, type and amount of clay and crusting, and land use
influencing soil properties, such as density and aggregation, which affect
raindrop detachment and shallow flow.  Following are some selected interrill
erosion terms.

A simple functional form incorporating rainfall intensity, I, as a measure of
the erosivity of raindrop impact is

2aIEI =  (14)
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where a is a coefficient to be determined experimentally.  If the production of
rainfall excess is related to I, and the transport capacity of shallow flow is,
in turn, related to the rainfall excess, then a simple interrill erosion
equation is

bREI = (15)

where b is a coefficient to be determined.  If the rate of detachment is related
to the rainfall intensity squared, and the flow transport capacity is related to
the ratio of rainfall excess to rainfall intensity, then a simple form of the
interrill erosion equation is

cIRIRcIEI == )/(2
 (16)

where c is a coefficient to be determined.  Additional information on a number
of expressions for interrill erosion rates is given by Foster et al. (1982).

The rill term, ER

There are two common ways of expressing soil detachment in rills, and one common
way of expressing the rate of sediment deposition in rills.  While more
expressions or functional forms for detachment and deposition are available, the
following material is indicative of modern erosion science.
   If the rate of soil detachment in a rill is assumed to be a function of the
shear stress in excess of a critical shear stress, then the following equation
describes the rate of rill erosion:

e
cdEr )( ττ −=  (17)

where d is a coefficient to be determined, τ is the average shear stress in the
cross-section, τc, is a critical shear stress that must be exceeded to initiate
soil detachment, and e is an exponent to be determined.
   A second major class of rill erosion equations results when one assumes the
rate of rill erosion is proportional to the amount the flow transport capacity,
Tc, is in excess of the existing sediment load, cq.  These equations are of the
form

)( cqTfEr c −= (18)

where f is a coefficient to be determined, and the other variables are as
described above.

   Two issues are involved in selecting a rill erosion equation of the type
discussed here.  The first issue is whether or not one assumes an interaction
among rill erosion, sediment load, and transport capacity.  Meyer and Wischmeier
(1969) neglected the interaction, and their model represents the first major
class of rill erosion models.  Foster and Meyer (1972) assumed an interaction,
and their model represents the second major class of rill erosion models.  The
second issue is whether or not one assumes a critical shear stress in
determining the rate of detachment, as in equation 17, or the transport capacity
used in equation 18.
   In the event that more sediment is delivered to the channel segment from
upstream and from lateral inflow than its transport capacity, then sediment
deposition will occur in the rill segment at a rate proportional to the deficit
in transport capacity.  This means that equation 18 can describe the
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rate of deposition if the coefficient f is a deposition coefficient.  The
deposition coefficient is primarily a function of particle characteristics. and
is often calculated as a function of the particle fall velocity and the steady-
state discharge rate (Foster, 1982).

10.2.4 Numerical Solutions

As stated earlier, equations 7 and 8 are solved numerically.  Finite difference
techniques are usually used (i.e. see Kibler and Woolhiser, 1970).  If R, in
equation 9, varies in space and time, then equations 9 and 10 must be solved
numerically.  If R in equation 10 varies, or if EI and ER in equation 12 are
complex functions, then equation 12 must be solved numerically.  The advantage
of numerical techniques in solving the above equations is that one need not make
as many assumptions as is required for analytic solutions, and the rainfall
excess term can vary in time and space.
   The disadvantages of numerical techniques, compared with analytic solutions,
is that the former usually require much more computer time, the solutions are
approximations of the real solutions, and the mathematics required for
sensitivity analysis, limits, and other manipulations may be unavailable or very
complex and difficult.

10.2.5 Analytic Solutions

Equations 9 and 10 can be solved analytically (by the method of characteristics)
if R is uniform over the plane, and the temporal variation in R is described by
a series of step functions.  However, to obtain an analytic solution for
equation 12, R in equation 9 must be uniform and constant for a finite or
infinite duration.  Equations 9 and 10 must be solved first to substitute into
equation 12.  Also, the form of Tc, in equation 18, should be simple, for
example, a linear function of q, to obtain an analytic solution.
As stated earlier, the disadvantages of analytic solutions, in comparison with
numerical solutions, are that they usually require much more restrictive and
simplifying assumptions.  The main advantages of analytic solutions include the
case with which they can be implemented on a computer, the speed with which they
can be evaluated, the simplicity of sensitivity analysis, and the case with
which one can examine limits and ocher mathematical properties of the solutions.

10.3 SIMPLIFIED EQUATIONS WITH ANALYTIC SOLUTIONS

In this section, specific assumptions and simplifications are made to allow the
derivation of analytic solutions for overland flow on a plane, and for interrill
and rill erosion with overland flow.  Analytic solutions to the runoff and
erosion equations are used to illustrate field data needed for estimation of
parameter values and for interpretation of processes controlling erosion.

10.3.1 The Basic Assumptions

In addition to the assumptions necessary for derivation of the one-dimensional
shallow water equations and their approximating kinematic wave equations,
specific assumptions are required for the erosion equations to have an
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analytic solution.  In equation form, the assumptions are:
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with initial and boundary conditions as

IKxc =),0( (20)

and

IKtc =)0,( (21)

We also assume a pulse input of the form
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for the rainfall excess.
   The first term on the right hand side of equation 19 means that we assume

RKE II = (23)

and the second term on the right hand side of equation 19 means that we assume

)( cqTKE cRR −= (24)

with Tc = Bh
3/2.  Since q = Kh3/2, we can write Tc = (B/K)q, and the result is the

second term on the right hand side of equation 19.
   Equations 10 and 21 mean that the initial concentration is KI and,
furthermore, that the concentration at the upstream boundary remains equal to KI
throughout the runoff hydrograph.  These results can also be seen by taking
limits of the equations presented in the Appendix.  These assumptions and
results are very significant in designing field experiments and in interpreting
the resulting data.

10.3.2 Implications

The limit of the concentration as t approaches zero is:

IKC =0 (25)

as the initial concentration.  The limit of c(t,x), for fixed x and as t
approaches infinity, is Cf, and is given by

)exp()/(/ xKKBKKBC RIf −−+= (26)
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Finally, Shirley and Lane (1978) showed that the mean concentration, Cb, over
the entire hydrograph is

xKxKKBKKBQQsC RRIb /))exp(1)(/(// −−−+== (27)

   If B/K > KI, then Co < Cb < Cf and c(t,x) for fixed x is a non-decreasing
function of t.  It can also be shown for fixed t that if B/K > KI, then c(t,x)
is a non-decreasing function of x. These two non-decreasing functions mean (in
the context of this particular model) that if B/K > KI, then there is more
transport capacity in the rills than is being satisfied by sediment input from
the internal areas.  As a result, rill erosion occurs at all times and at all
positions on the plane.  In terms of sediment concentration graphs measured in
the field, measured concentrations would tend to start at KI near t = 0, and
increase throughout the duration of runoff, assuming, of course, that the model
is a good representation of reality.
   If B/K < KI, then the opposite is true.  Under these conditions, c(t,x) for
fixed x would be non-increasing, or tend to decrease with increasing t. Also,
c(t,x) would be non-increasing with x and a fixed t. Again, if the model is
correct, then measured concentrations would tend to start at KI near t = 0, and
decrease throughout the duration of runoff.  If B/K = KI, then transport
capacity and existing sediment load are in equilibrium, so Co = Cf = Cb, and, in
fact, c(t,x) = KI for all x and t.
   The implications of these results for plot and hillslope studies are that
sediment concentration should be measured throughout the duration of runoff, and
that analysis of data, using this model for parameter identification, should
concentrate on events with nearly constant rainfall intensity and nearly
saturated initial soil water content.  The last two conditions will tend to make
rainfall excess nearly constant, as assumed in the analysis.  Fortunately, these
conditions can nearly be met in rainfall simulator studies if data from runs
where the initial soil water content is near saturation and the infiltration
rate is nearly a constant are obtained for analysis.
   Therefore, as a first approximation, one can examine the shape of the
sediment concentration vs. time curve from a particular event on an experimental
plot, and infer whether transport capacity in the rills (B/K < KI) or detachment
rate (B/K > KI) in the rills is limiting sediment yield.

10.4 DISCUSSION

Although the Universal Soil Loss Equation remains the most often used model for
predicting erosion on upland areas, more physically based models are emerging,
and may become practical tools in the near future (i.e. see Rawls and Foster,
1986).  As these new models emerge, they will probably be based upon unsteady
and nonuniform overland flow modelled with the kinematic wave equations.
Moreover, interrill and rill erosion processes will probably be explicitly
represented in the partial differential equation used to describe erosion and
overland flow.
   The implications for plot and hillslope studies are that more, and more
intensive, data need to be collected throughout the duration of runoff events,
and at various positions on the slope.  Only then can we begin to quantify
unsteady and spatially varying overland flow and erosion processes.



300 MODELLING GEOMORPHOLOGICAL SYSTEMS

APPENDIX

Summary of the Solution Regions and Solutions for the Overland Flow Equations in
the t – x Plane

Recall that the kinematic wave equations are:

R
x

q

t

h =
∂
∂+

∂
∂

(A1)

and

mKhq = (A2)

where the variables are as defined previously in the text.

1. Domains in the t – x Plane for Solutions of the Kinematic Overland Flow
Equations

Solutions for the overland flow equations require that the positive quadrant of
the t – x plane be divided into four regions.  The regions listed below are also
presented in Figure 10.4.

a. Domain of Flow Establishment.  This region of the t – x plane represents
time from zero until cessation of rainfall excess at time t* and distance
down the plane such that steady state has not been reached.

mm tKRx

tt
1

*0
−≥

≤≤
(A3)

b. Domain of Established Flow.  This region of the plane represents time from
zero until cessation of rainfall excess and distance down the plane such
that steady state has been reached:

mm tKRx

tt
1

*

0

0
−≤≤

≤≤
(A4)

c. Domain of Prerecession.  This region of the plane represents time after
cessation of rainfall excess and before depth of low starts receding:

tRtKmtRmKx

tt
mmm 1

**
1

*

)()1( −− +−≥

≥
(A5)

d. Domain of Recession.  This region of the plane represents time after the
cessation of rainfall excess and depth of flow is receding:

tRtKmtRmKx

tt
mmm 1

**
1

*

)()1(0 −− +−≤≤

≥
(A6)



MODELLING EROSION ON HILLSLOPES 301

Solutions in the Regions

a. Domain of Flow Establishment.  In this region, the flow is unsteady but
uniform:

Rtxth =),( (A7)

b. Domain of Established Flow.  In this region, the flow is steady but not
uniform:

mKRxxth /1)/(),( = (A8)

c. Domain of Prerecession.  In this region the flow is steady and uniform:

*),( Rtxth = (A9)

d. Domain of Recession.  In this region, the flow is unsteady and not uniform:

)/(),( 1 KRxfxth t
−= (A10)

where

)()( *
1 ttRmuuuf mm

t −+= −
(A11)

   The solutions described above are also shown in Figure 10.1.

Summary of Solution Regions and Solutions for the Sediment Concentration
Equations in the t – x Plane

Recall that the erosion equations are:

RI EE
x

cq

t

ch +=
∂

∂+
∂

∂ )()(
(A12)

with

RKE II = (A13)

and

)( cqBhKE n
RR −= (A14)

where the variables are defined previously in the text.

1. Domains in the t – x Plane for Solutions of the Sediment Concentration
Equations

Solutions for the concentration equations require that the positive quadrant of
the t – x plane be divided into seven regions.  The regions listed below are
also shown in Figure 10.2.

a. Domain 1.  This region of the plane represents time from zero until
cessation of rainfall excess and distance down the plane such that
concentration and flow have not reached steady state:
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Figure 10.1.  Domains in the t – x plane for solutions of the kinematic overland
flow equations for a constant and uniform rainfall excess rate of duration t*

*0 tt ≤≤

and (A15)

mm tKRx 1−≥

b. Domain 2.  This region of the plane represents time from zero until
cessation of rainfall excess and distance down the plane such that
concentration has not reached steady state, but flow has:

mmmmm tKRxtRKm

tt
11

*0
−−− ≤≤

≤≤
(A16)

c. Domain 3.  This region of the plane represents time from zero until
cessation of rainfall excess and distance down the plane such that
concentration and flow have reached steady state:
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Figure 10.2.  Domains in the t – x plane for solutions of the overland flow
erosion equations for a constant and uniform rainfall excess rate of duration t*
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d. Domain 4.  This region, corresponding to the domain of prerecession for
flow, represents time after cessation of rainfall excess before depth of
flow is receding, and before the arrival of the slower travelling
concentration disturbance from the interaction of the water wave with
cessation of rainfall excess:

tRtKmtRmKx

tt
mmm 1

**
1

*

)()1( −− +−≥

≥
(A18)

In Domains 5-7, let

)1(/))1/(()( 1
0* −+−+= − mRmmuuKtua m

, (A19)
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and

)1(/))1/(()( 0 −+−= − mRmuumKKub m
(A20)

e. Domain 5.  This region represents that portion of the domain of recession
before the arrival of the concentration disturbance propagating from the
interaction of the water wave with cessation of rainfall excess.  With the
above definitions of a and b, let

))(()( 1
1 tabtx −= (A21)

where

)1/()( 1
*0 += + mRtmK M

(A22)

   Finally, the region is defined as:

*tt ≤

and (A23)
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f. Domain 6.  This region represents that portion of the domain of recession
after the arrival of the concentration disturbance propagating from the
interaction of the water wave with cessation of rainfall excess and before
the arrival of the concentration disturbance propagating from the upper
boundary.  With the above functions a and b, let

))(()( 1
2 tabtx −= (A24)

where

)1/()/( 1
*0 += + mmRtmK m

(A25)

With these definitions, the region is bounded by:

*tt ≥

and (A26)

)()( 12 txxtx ≤≤

g. Domain 7.  This region represents that portion of the domain of recession
after the arrival of the concentration disturbance propagating from the
upper boundary:

*tt ≥

and (A27)

)(0 2 txx ≤≤
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2. Solutions in the Regions

a. Domain 1.  In this region

)()/(),( uuFKKBKKxtc IRI −+= (A28)

where

mtKRu mm /1−= (A29)

and

∫ −=
1

0

/1 d))1(exp()( vvuKvuF R
m

(A30)

b. Domain 2.  In this region
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where

mmm mRRtKRxmKRx )1(/))/((( /11
0 −−= −

(A32)

c. Domain 3.  In this region

xKxKKBKKBxtc RRI /))exp(1)(/(/),( −−−+= (A33)

d. Domain 4.  In this region

)))(/exp(())/(/1)(/(/),( ***** tttxKmxmFxKKBKKBxtc RRI −−−+= (A34)

where

mm tKRx *
1

*
−= (A35)

e. Domain 5.  In this region

)exp(/),( 0 xKcKBxtc R−+= (A36)

where

),())1/(),())(1(( *0 xthmxtmhttmRK m++−−= (A37)

and

))/1(exp()/))/1(),/1((( ***0 RtbKKBRtbRtacc R−= (A38)

where c is computed using the formula from domain 4, equation A34.

f. Domain 6.  In this region

))(exp(/),( 00 xxKcKBxtc R −−+= (A39)
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where K0 is defined above, RmKmKx mm )1/(
00 )/)1(( ++= , and

KBxtcc /),( 0*0 −= (A40)

with ),( 0* xtc  computed using the formula for domain 2, equation A31.

g. Domain 7.  In this region

))(exp(/),( 00 xxKcKBxtc R −−+= (A41)

where K0 and x0 are defined above and

KBxtcc /),( 0*0 −= (A42)

with ),( 0* xtc  computed using the formula for domain 3, equation A33.
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